



# Magna Steyr

Zukünftige Herausforderungen im NVH-Entwicklungsprozess für elektrisch betriebene Fahrzeuge

Dr. Thorsten Bartosch / Klaus Kauermann, 16. ÖAMTC- Symposium, 26.03.2019

# 16.ÖAMTC-Symposium –Die Zukunft im Griff



### Zukünftige Herausforderungen im NVH-Entwicklungsprozess für elektrisch betriebene Fahrzeuge

Bei rein elektrisch betriebenen Fahrzeugen, die derzeit im Fokus sind, fehlen die klassischen Motor/Getriebeanregungsmechanismen, die das Roll-und Windgeräusch orchestrieren und teilweise maskieren. Neue Geräuschkomponenten im Frequenz-und Zeitbereich kommen hinzu. Das Ergebnis ist ein völlig neues Klangerlebnis im Fahrzeug über das Geschwindigkeitsspektrum.

#### Die neuen Herausforderungen heißen also:

- > Reduktion von Roll-und Windgeräusch mit verbesserten virtuellen und hybriden Entwicklungsmethoden.
  - → Windgeräusch: Aeroakustik-Simulation und Optimierung mittels aeroakustischen Ton Modellen im Windkanal
  - → Rollgeräusch: Anwendung der kraftbasierten Transferpfadanalyse (kbTPA)und der Kraft-Iterations-Methode (KIM)
- Simulation der Anregungsmechanismen der elektrischen Komponenten und einer Motorgeräuschsynthese mittels physikalischer Modellierung.
  - → NVH E-Motorsimulation & Motorgeräusch-Synthese,

#### Das Ziel:

Dem Fahrer soll auch bei elektrisch angetriebenen Fahrzeugen ein klares und komfortables akustisches Feedback gegeben werden, das ihm die Kontrolle über das Fahrzeug in optimaler Weise erlaubt und ihm gleichzeitig einen hohen Qualitätseindruck vermittelt.

### **Akustische Mechanismen**





Roll/Windgeräuschwahrnehmung steigt aufgrund wegfallender Maskierung durch VKM.

Gesamtgeräuschpegel sinkt aufgrund Abwesenheit VKM.

Wesentliche Herausforderungen des reinen E-Antriebs:

- Höherfrequente Anregungen ( > 300Hz)
- Risiko von Wind- und Rollgeräusch aufgrund fehlender Maskierung durch VKM

#### Generisches PMSM (permanentmagnetisches Synchronmaschinen Modell) zur Berechnung der elektromagnetischen Kräfte:

- Anzahl der Pol-Paare
- Anzahl der Stator/Rotor Nuten
- Geometrie magnetischer Kreis (z.B. Kühlschächte, Luftspalt...)
- Ansteuerung E-Maschine & Sättigungsverhalten



### Entwicklung Wind/Rollgeräusch seid 1975





| vehicle                               | year<br>of manufacture | noise level<br>Driver´s ear left<br>in dB(A) |
|---------------------------------------|------------------------|----------------------------------------------|
| Renault R16; 55 PS                    | 1975                   | 75                                           |
| Renault R4; 34 PS                     | 1978                   | 77                                           |
| Renault 18 GTD                        | 1981                   | 72                                           |
| Ford Grananda 2,1 D                   | 1981                   | 73                                           |
| VW Touareg 4,2 TDI                    | 2012                   | 61                                           |
| Audi Q7 3,0 TDI                       | 2014                   | 61                                           |
| BMW 520 d<br>Touring                  | 2014                   | 63                                           |
| BMW 135i<br>Cabrio                    | 2013                   | 64                                           |
| Citroen C5 HDI 1,6<br>Exclusive Kombi | 2012                   | 64                                           |
| BMW 740d<br>X-Drive                   | 2012                   | 59                                           |
| Audi A8 4,2 TDI<br>quattro            | 2012                   | 60                                           |
| Mercedes S-Klasse<br>350d             | 2018                   | 59                                           |
| Nissan Leaf<br>e-drive                | 2018                   | <b>66</b><br>Rolling noise<br>dominant       |
| Opel Ampera<br>e-drive                | 2018                   | 69<br>Rolling noise<br>dominant              |
| Tesla Model S<br>e-drive              | 2017                   | <b>67</b><br>Rolling noise<br>dominant       |
| Tesla Model 3<br>e-drive              | 2018                   | <b>67</b><br>Rolling noise<br>dominant       |
| Jaguar I-Pace<br>e-drive              | 2018                   | 66<br>Rolling noise<br>dominant              |

### Windgeräusch - Überblick

# **MAGNA**



T. Bartosch / K. Kauermann\_Disclosure or duplication without consent is prohibited

# M MAGNA

## Aero-akustischer Entwicklungsprozess mit Fokus auf den Einsatz eines adaptierten Ton-Models (advanced clay model)

- Aeroakustischer Prozess
- Spezifikationen & Aufbau Ton Modell
- Test Equipment
- Quellenidentifikation
- Auswertungen Varianten
- Korrelation Schwinggeschwindigkeit an der Seitenscheibe zum Schallpegel am Fahrerohr
- Relativon  $L_P$   $L_V$   $L_{V/P}$
- Optimierungsergebnis am Ton-Modell und Vergleich Messung Berechnung
- Vergleich zum Benchmark

### **Aeroakustischer Prozess**





Windkanal

Messung mit Ton

Modell

#### **CAA Simulation:**

Suche nach aero-akustischen Hot Spots. Designoptimierung in früher Entwicklungsphase mit Vorschlägen für Styling-Änderungen.

#### **Ton-Modell Messung im Windkanal:**

Innengeräuschmessung mit Mikrophon auf Fahrerohrposition, Beschleunigungssensoren an der Seitenscheibe innen, Oberflächenmikrofone auf Anfrage

#### Kommentar:

Oberflächenmikrofon-Messergebnisse haben nur eine untergeordnete Bedeutung hinsichtlich der Korrelation zum SPL am Fahrerohr, verändern aber das Anströmverhalten und damit die Windgeräusch-Anregung signifikant.

#### Schnelle Varianten-Studien:

Messkampagne mit vielen Designs in kurzer Zeit möglich. [bis zu 60 Designs an einem Mess-Tag im Windkanal]











3 Optimierungspotentiale

T. Bartosch / K. Kauermann\_Disclosure or duplication without consent is prohibited

# Aeroakustische Ton-Modell Spezifikation



Aufbau eines Ton-Modells zur Beurteilung des Einflusses von Styling-Modifikationen auf den Innenschallpegel über die Messung der Scheibenvibrationen

- Erzeugung eines Hohlraums innerhalb des Ton-Modelles so ähnlich wie möglich zum endgültigen Fahrgastraum.
- Einsetzen eines Scheiben-Dummies [Glas-oder Aluminiumplatte (mit ca. gleicher Form & Dicke wie die finale Seitenscheibe)]
- Einschrauben des Scheiben-Dummies auf dem Scheibenrahmen mittels Kitt+Nitto-Pads.
- Aufbringen von 6 gleichmäßig verteilten, leichten monoaxialen Beschleunigungssensoren auf der Seitenscheibe.

Platzierung der Beschleunigungs-Sensore auf der Seitenscheibe & Mikrophon an der Fahrerohr-Position





## **MAGNA**



T. Bartosch / K. Kauermann\_Disclosure or duplication without consent is prohibited

# **Å** MAGNA



#### Karosserie mit grober Tonauflage



#### 1. Konturfräsung (grob)



2. Konturfräsung (fein)



**Glättung & Finishing** 



Motorraum + Motor-Dummy



# **MAGNA**

#### Unterboden + Abgasanlage



**Radhaus + Fahrwerks-Dummy** 



Kühl-Paket



#### Aufbau Aluminium-Seitenscheibe



#### Frontschürze + Frontgrill



#### Alu-Seitenscheibe + Seitenspiegel





#### Fertiges Ton-Modell mit Scheibenwischern und Motorhaube



#### **Photometrische Messung**







3/26/2019

T. Bartosch / K. Kauermann\_Disclosure or duplication without consent is prohibited

### **Test Equipment**

# **Å** MAGNA

#### Alu-Seitenscheibe mit Beschleunigungs-Sensoren innen



#### Clay model with surface microphones



Mikrophon-Array und Beamforming Technologie



#### Meßprinzip

- Mikrofonarray fokussiert auf relevante Objektpunkte mittels Zeitverschiebung aufgrund Laufzeitunterschieden der erfassten Signale .
- Die zeitkorrigierten Signale aller Mikrofone werden summiert (verstärkt) und dem relevanten Objektpunkt zugeordnet
- Der Schall von Quellen an anderen Positionen wird dabei gedämpft (keine Zeitkorrerktur)
- Je größer das Array, je niedriger die Grenzfrequenz
- Digitale Filter optimieren das Ergebnis

T. Bartosch / K. Kauermann\_Disclosure or duplication without consent is prohibited

### Geräuschquellen-Identifikation



### Ton Modell im Windtunnel **Beamforming Ergebnisse** in verschiedenen Frequenzbereichen 34.0 - 38.0 - 38.0 - 32.0 36.0 - 30.0 34.0 -28.0 32.0 30.0 24.0 28.0 -220

3/26/2019

T. Bartosch / K. Kauermann\_Disclosure or duplication without consent is prohibited

40.0

- 36.0

- 34.0

- 32.0

- 30.0

- 28.0

### **Bewertung von Design-Varianten**



#### scharfe Ecken/Kanten vs geglättete





Test mit/ohne Unterboden Strömungsblocker



Unterschiedliche Design-Gestaltung des Seitenspiegels und Spiegelfußes



#### Einfluß vorderes Radhaus



Einfluss Oberflächen-Mikrophone





T. Bartosch / K. Kauermann\_Disclosure or duplication without consent is prohibited

3/26/2019

### Korrelation Schwinggeschwindigkeit Seitenscheibe – Geräuschpegel Fahrerohr







A<sub>i</sub> -- weighted areas -- accelerometers

### Prognose Schallpegel Fahrerohr über Kenntnis Schwinggeschwindigkeitspegels Seitenscheibe

1) Berechnung des flächengewichteten Gesamtgeschwindigkeitspegels  $L_v$ [dB] für jede 1/3 Octave mit Kenntnis der gemessenen  $V_i$ [m/s] and  $A_i$  [m<sup>2</sup>] unter Verwendung von:

$$L_{V^{1/3Oct}} = 10^* \log \Sigma[(V_i^2/V_0^2) * A_i]$$

2) Berechnung von  $L_v$  [dB] mit Kenntnis von  $L_{v/P}$  aus den Benchmarkmessungen oder SEA-Simulation unter Verwendung von:

3) Prognose Innengeräusch durch Berechnung von L<sub>P</sub> dB(A)] unter Verwendung von:

$$L_{\rm P} = L_{\rm V} - L_{\rm V/P} - L_{\rm (A-Filter)}$$

Anmerkungen:

- Für die Bestimmung der Transferfunktion L<sub>V/P</sub> aus Messungen im Benchmarkfahrzeug sollten folgende Eigenschaften zwischen Benchmark und Entwicklungsfahrzeug ähnlich sein:
- akustische Impedanz; Oberfläche und durchschnittliche Absorption des Fahrgastraumes; finaler Leckage-Zustand; Fensterscheibendicke.
- Anstatt Benchmark-Messungen kann auch eine SEA-Berechnung verwendet werden.
- V<sub>i</sub> ist die Integration aus der Beschleunigungsmessungs a<sub>i</sub>.
- Die Ergebnisse sind valide oberhalb 600Hz

### Zusammenhang von $L_P - L_V - L_{V/P}$ (Beispiel)





T. Bartosch / K. Kauermann\_Disclosure or duplication without consent is prohibited

# Optimierungs-Ergebnisse am Ton Modell & Vergleich Messung vs Berechnung

# **Å** MAGNA



T. Bartosch / K. Kauermann\_Disclosure or duplication without consent is prohibited

### Vergleich Ton-Modell vs Benschmarkfahrzeug





# MAGNA

# Rollgeräusch Optimierung

- Rollgeräuschoptimierung Herangehensweise
- Rollgeräuschoptimierung mittels
   kraftbasierender TPA (кьтра) & Kraft-Iterationsmethode (кім)
- RollgeräuschTPA: Ablaufbeschreibung
- Kraftmessrad; Shakeranregung; Beschleunigungsmesspunkte
- Kraftmessrad & Shakeranregung
- Vergleich der gemessenen und iterierten Kräfte
- Gemessene Kräfte Radträger hinten rechts
- Innengeräuschergebnisse

#### **Erwartetes Ergebnis:**

> Bestimmung der Haupteinflüsse im Übertragungspfad vom Reifen zum Fahrerohr bezüglich Rollgeräusch

#### Die Herangehensweise:

- $\geq$ Bestimmung der vibro-akustischen Komfortmaße (insbesonders Schalldruck Innenraum) mittels der kraftbasierten Transferpfadananlyse (kbTPA) in Kombination mit der Kraft-Iterationsmethode (KIM)
- Simulation der Transferpfade bis zum Fahrerrohr mittels MKS und FEM  $\geq$
- Validierung mittels direkt (Modalhammer) und reziprok (Innenschallguelle) gemessnen FRF's  $\geq$
- Optimierung der Transferpfade simulatorisch und Überprüfung des Ergebnises auf dem Prüfstand mittels  $\geq$ Shakeranregung (aus der KIM) und auf der Straße



**Kraftmess-Rad** 

#### Volumenschallquelle LMS

#### Magna Teststrecke



#### Modalhammer

Anregekräfte

**MAGNA** 

T. Bartosch / K. Kauermann\_Disclosure or duplication without consent is prohibited

### Rollgeräuschoptimierung mittels kraftbasierender TPA (kbTPA) & Kraft-Iterationsmethode (KIM)

#### **Vorbereitung & Messung**





Messung Körperund Luftschall im Fahrzeug



#### Messung Radträgerkräfte





#### Messung direkte FRF´s





#### **Prozess / Transferfunktion**

#### **Geräusch Transferfunktion**

- Reziproke Anregung mit Volumenschallquelle
- →Direkte Anregung mit Modalhammer



Hybride Bestimmung der Transferfunktionen alle relevanten Geräuschpfade



#### **Ergebnis & Optimierung**

Bestimmung der Pfade mit dem hauptsächlichen Beitrag zum Rollgeräusch



Optimierung der Struktur in den ermittelten Beitragspfaden mittels FEM-Simulation



T. Bartosch / K. Kauermann\_Disclosure or duplication without consent is prohibited

3/26/3/26/2019

### Hybride Bestimmung der Transferfunktionen aller relevanten Geräuschpfade



### Kraftmessrad & Shakeranregung

# **MAGNA**

### Messpunkte:

- > 25 Beschleunigungs-Sensoren an der Hinterachse
- 3 Shaker in 3 Raumrichtungen (X/Y/Z) mit entsprechenden Kraftsensoren
- 1 Kraftmessrad
- Reference Spektrum Rauhasphalt 60kph  $\triangleright$







Shaker X

point ID

Shaker X

Shaker Y

Shaker Z

### Vergleich der gemessenen und iterierten Kräfte



- Kraftspektrum X/Y/Z
- Rauhasphalt 60kph
- iterierte Kraft
- ✤ gemessene Kraft







### Vergleich Glattasphalt, Rauhasphalt, Kopfsteinpflaster



T. Bartosch / K. Kauermann\_Disclosure or duplication without consent is prohibited





### Vergleich Glattasphalt, Rauhasphalt, Kopfsteinpflaster

# **MAGNA**

# NVH Simulation eines elektrischen Antriebs und Sound-Designs mittels Active Noise

### NVH E-Motor Simulation

- NVH Simulation zur E-motor Fahrzeugintegration
- o Quasi-stationäre Simulation der elektromagnetischen Kräfte
- Kopplung der Statorkräfte
- o FDOM: Analyse bei Problemfrequenzen

### Motorgeräusch Synthese - Physikalische Modellierung

- o Motorensoundgenerator mittels physikalischem VKM Modell
- Sound Design Prozess
- o Soundbeispiel



### Fahrkomfort (< 30Hz)

MBS Modell für Antriebsstrang und Fahrwerk und

Karosserie als "flex-body" Modell

- Fahrbahnerregter Schwingungen (z.B. DT Koppelmoden und Rotationmoden, Abstimmung mit "modaler Landschaft")
- Jerking (Schwingungen der Regelstrecke)

### Heulgeräusche (>300Hz)

Multiphysics FE-Modell des Motorantriebsstrangs

- ➢ Akustischer Pfad: Abstrahlung durch Gehäuse und Bracket → Durchschallung der Karosse
- ➢ Strukturpfad: Körperschalleintrag in Karosse an Lagerstellen → resonante Abstrahlung an Fahrerkabine



Eigenfrequency=744.38+0.031847i Hz Surface: Total displacement (m)



### **E-motor Heulgeräusche: WOT Benchmark**





- Nahfeldmikrofon zeigt 3 kritische Ordnungen

Durchschallungspfad kann für tiefe Frequenzen nicht ausgeschlossen werden (z.B. TL Stirnwand 20-40dB)

### **E-motor Körperschall: WOT Benchmark**





Beschleunigungen von ~3-4 m/s<sup>2</sup> an der aktiven Lagerseite

Isolation von 10-20dB f
ür Ordnungen messbar. Passivseitige Beschleunigungen > 0.1m/s2 bis zu 3kHz vorhanden

#### Resonante Abstrahlung kann hier auch nicht ausgeschlossen werden

#### → E-motor Heulgeräusche müssen in Hinblick auf Durchschallung & resonante Abstrahlung untersucht werden



- Dominanter Pfad (Abstrahlung oder Körperschall)?
  - Quantifizierung von Lagerkräften
  - Quantifizierung der abgestrahlten Leistung

- Verständnis von Anregungsmechanismen
  - Modale Gehäuse/Bracket Eigenschaften
  - Rotor/Statorgeometrieeinfluß auf Quelle
  - Einfluss von Ansteuerung/Lastprofilen



### Elektromagnetische Kräfte als Quelle

### Permanentmagnetische Synchronmaschine

- 2D Querschnittsgeometrie (magnetischer Kreis)
  - Poolpaare (2)
  - Kühlkanäle (8)
  - Stator/Rotornuten (24/4)
- Ansteuerung über Wicklungsstrom und Drehfeldfrequenz
- Annahme dynamischer Lasten

### Simulation in 1D/2D

- ODE Modellierung der Rotationsdynamik
- Quasi-stationärer Löser im Zeitbereich
- $\succ$  3D → schräge Wicklungen od. Kühlkanäle





### **Quasi-stationäre Simulation im Zeitbereich**





Hochlauf zur Erreichung von 2400rpm @ 0.3 s

Rotationale Trägheitsmomente glätten die Winkelgeschwindigkeit

Lastaufbringung für > 0.3 s

Drehmomente bezüglich Starrkörper

Fokus der Analyse > 0.45 s

### **Axiale Drehmomentenschwankung**

**Å** MAGNA



### Ungleichförmigkeit / Umdrehung

- 4 Pole/Polnuten
- 8 Kühlschächte
- 24 Statornuten

### Geometrische Ungleichförmigkeiten sind nicht simuliert

Höhere Ordnungen von Ungleichförmigkeiten überlagen sich → Trennung schwierig

### Kopplung der Statorkräfte





Radialkräfte stellen Hauptkomponente dar.

$$\sum F_{rad} = 0$$

$$\sum F_{tan} \neq 0$$

### FDOM: Analyse bei Problemfrequenzen

## **MAGNA**



### Probleme für E-Fahrzeuge mit geringer akustischer Motorabstrahlung

- Außengeräusch Homologationsanforderung für AVAS (Automotive Vehicle Alert System) (Europe, Japan: UN-R 138-00, US: FMVSS 141)
- Innengeräusch
  - einerseits mangelndes Motorfeedback
  - andererseits kein Motorgeräusch zur Maskierung von z.B. Nebenaggregatsgeräuschen

### Motorensoundgenerator – physikalisches VKM Modell



T. Bartosch / K. Kauermann\_Disclosure or duplication without consent is prohibited

**MAGNA** 

### **Sound Design Prozess**

**MAGNA** 



T. Bartosch / K. Kauermann\_Disclosure or duplication without consent is prohibited

# PD - Implementierung eines physikalischen VKM Soundgenerators





### Zusammenfassung

### E-Motor

- Modellierung elektromechanischer Belastungen
  - → Welligkeit Drehmoment (torque ripple)
  - → Statorkräfte (relevant für Abstrahlung)
- Beziehung zwischen Körper-und Luftschallgeräuschpfaden

### Motorgeräusch Synthese

- Physikalische Sound-Design Modellierung VKM
- Anwendung für Fahrzeug Innen-und Außen Sound
- Maskierung von Nebenaggregatgeräuschen







# DRIVING EXCELLENCE. INSPIRING INNOVATION.