

Magna Steyr

Jörg PEER

"Virtuelle Sitzkomfortentwicklung"

Klaus KAUERMANN

"Erweiterte Sitzentwicklung am Beispiel Whiplash/Schleudertrauma"

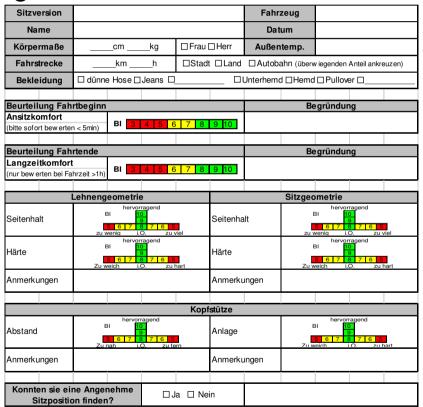
ÖAMTC 15. Symposium "Reifen und Fahrwerk", 10. Oktober 2017

Was ist Sitzkomfort?

Die Bequemlichkeit eines Sitzes wird ausschließlich durch die Gestaltung des Sitzpolsters bestimmt.

Neben einer ausreichenden Schwingungs-Dämpfung entscheidet ein gut geformtes "Sitzpolster" über das langzeitige Wohlbefinden des Sitzbenutzers.

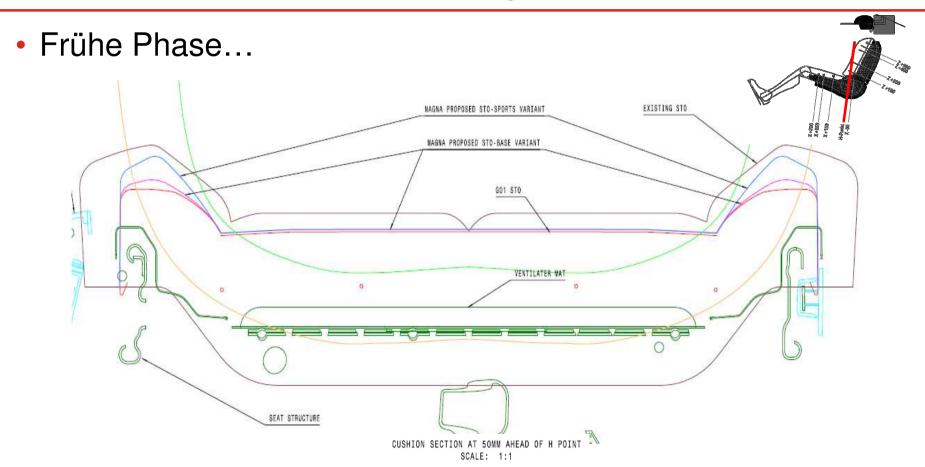
Virtuelle Auslegung/Entwicklung


- Sitzposition (Hüft-Punkt) Vorgabe => Ergonomie
- Geometrische, materielle Auslegung und Erreichung H-Punkt => Sitzkomfort
- Zusätzlich sind die Designaspekte und Sicherheitsanforderungen zu berücksichtigen

Sitzfunktionen

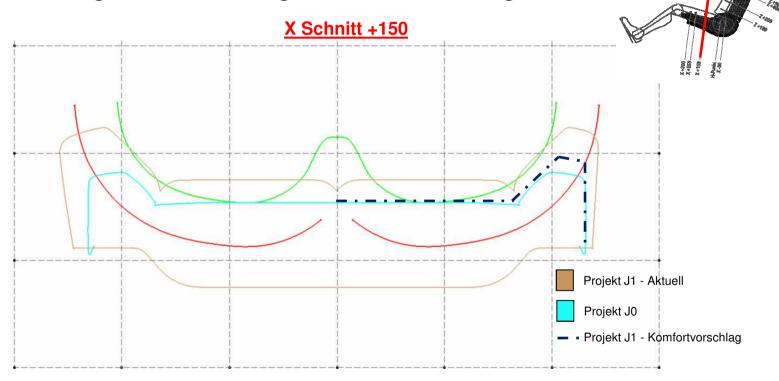
- Erweiterte Sitzfunktionen sollen den Komfort erhöhen
- Mechanische 4-Wege-/ bis hin zur elektrischen 18-Wege-Verstellung
- Weitere Komfort-Optionen: Lordose, Sitzheizung, elektrische Verstellung(en),
 Belüftung, Massage, Breitenverstellung,
 Aktivsitz, Nackenheizung, ...

Ziele / Bewertung (Auszug)



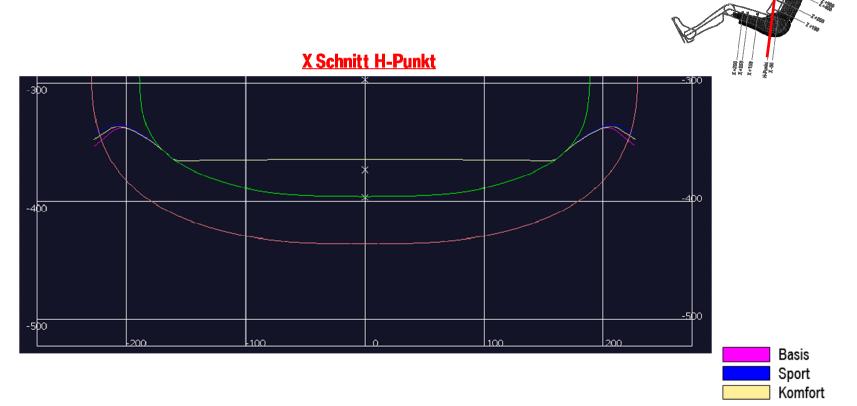
"Komfortschnitte"
"Sitz-Schale": SAE J826 H-POINT MANIKIN

Die Erreichung der H-Punktlage ist für die Entwicklung des Interieurs von hoher Bedeutung, da hiervon die Innenraumgestaltung (Bedienelemente, Maßkette), sowie die gesetzlichen Anforderungen, wie die Positionierung der Crash-Dummies, abhängen. Die SAE Maschine hat starre Sitz- und Lehnen-Schalen und wird entsprechend einer vorgegebenen Prozedur eingesessen.

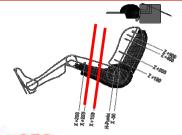


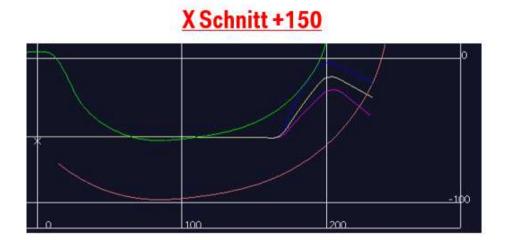
10/10/2017

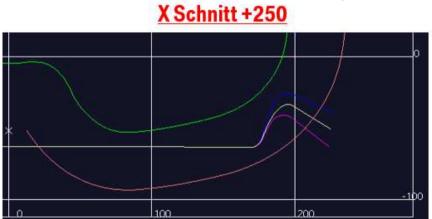
Disclosure or duplication without consent is prohibited



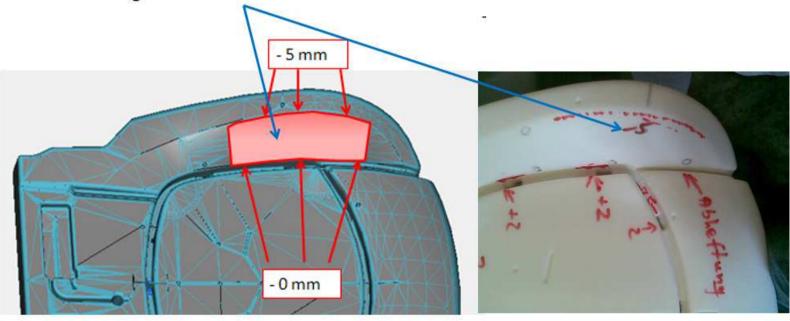
Verbesserungen/Vorschläge im CAD rückgeführt



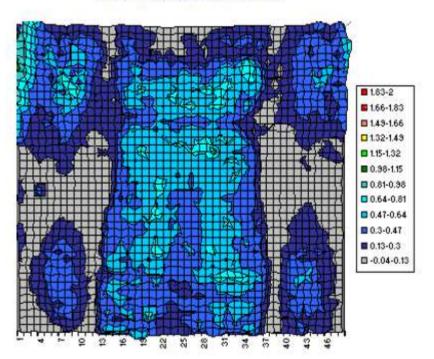

• "Komfortschnitte"

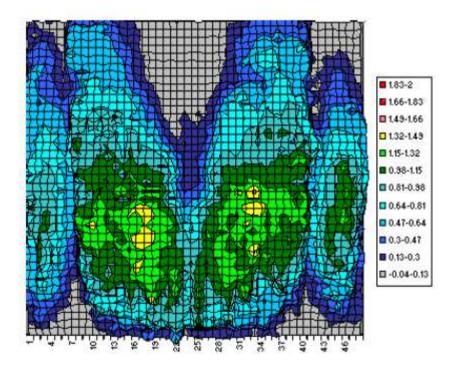


• "Komfortschnitte"



Modifikation in der Hardware

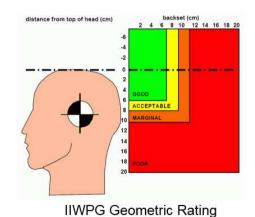

Abflachung an Kissenseitenwulst nach vorne um 5mm.

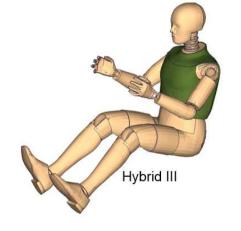


Sitzdruckverteilung Fahrersitz

Porsche Panamera 4s Lehne

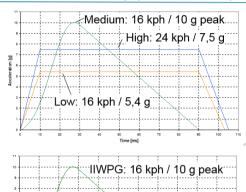
Porsche Panamera 4s Sitzkissen

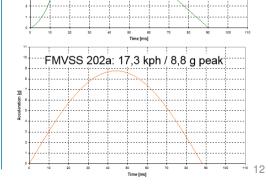




Whiplash Tests Überblick

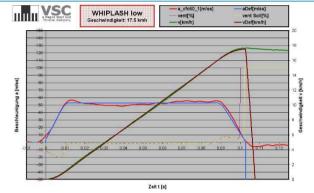
	EuroNCAP	IIWPG	FMVSS 202a
Test	Dynamic Test with Modifier	Geometric and Dynamic Rating	Geometric and Dynamic Rating
Platform	Whiplash Sled	Whiplash Sled	Vehicle
Dummy	BioRID II	BioRID II	Hybrid III
Parameters	NIC, Nkm, Head Rebound vel., Neck Fx, Neck Fz, T1 acc., THRC	Neck Fx, Neck Fz, T1 acc., THRC	HIC, Head Torso Angle
	Rating	Rating	Law


BioRID II



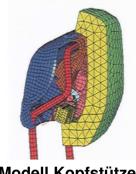
Disclosure or duplication without consent is prohibited

Generische Impulse anstelle von fahrzeugspezifischen Impulsen

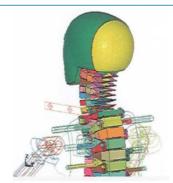

10/10/2017

Entwicklungsstrategien

- Konventionelles Testen
- Whiplash Schlitten auf Hyper-G
- Bis zu 3 Tests pro Tag möglich



Whiplash Schlitten



EuroNCAP Low Pulse auf Hyper-G

- CAE virtuelle Entwicklung
- Detailliertes Sitzmodell ist Voraussetzung
- BioRID II verfügbar als CAE-Dummy für ABAQUS, LS-Dyna, PAM-Crash, MADYMO

FE-Modell Kopfstütze (HR)

BioRID CAE-Dummy

Die Kür – neue Wege in der Sitzentwicklung mit dem XSENSOR - System XSENSOR - System

Neue Möglichkeiten:

- Erfassung genauer Druckinformationen bei plötzlichen Stößen durch schnelle Druckabbildungssensoren in Kombination mit leistungsstarken Software-Tools.
- Detaillierte Information über Oberflächendrücke vor, bei und nach dem Aufprall als Basis für effiziente Optimierungsmaßnahmen am System Fahrersitz

Erreichung folgender Entwicklungsziele:

- Minimierung der erhöhten Körperkontaktdrücke auf Sitz, Lehne, Kopfstütze
- Überprüfung der Leistung von Kopfstützen und Sitzlehnen beim Heckaufprall
- Ermittlung tatsächlicher Kräfte, die von Airbags und Sicherheitsgurten auf den Fahrer ausgeübt werden

Die Kür – neue Wege in der Sitzentwicklung mit dem XSENSOR - System XSENSOR - System

Neue Möglichkeiten:

- Erfassung genauer Druckinformationen bei plötzlichen Stößen durch schnelle Druckabbildungssensoren in Kombination mit leistungsstarken Software-Tools.
- Detaillierte Information über Oberflächendrücke vor, bei und nach dem Aufprall als Basis für effiziente Optimierungsmaßnahmen am System Fahrersitz

Erreichung folgender Entwicklungsziele:

- Minimierung der erhöhten Körperkontaktdrücke auf Sitz, Lehne, Kopfstütze
- Überprüfung der Leistung von Kopfstützen und Sitzlehnen beim Heckaufprall
- Ermittlung tatsächlicher Kräfte, die von Airbags und Sicherheitsgurten auf den Fahrer ausgeübt werden

Die Kür – neue Wege in der Sitzentwicklung mit dem XSENSOR - System XSENSOR - System

Neue Möglichkeiten:

- Erfassung genauer Druckinformationen bei plötzlichen Stößen durch schnelle Druckabbildungssensoren in Kombination mit leistungsstarken Software-Tools.
- Detaillierte Information über Oberflächendrücke vor, bei und nach dem Aufprall als Basis für effiziente Optimierungsmaßnahmen am System Fahrersitz

Erreichung folgender Entwicklungsziele:

- Minimierung der erhöhten Körperkontaktdrücke auf Sitz, Lehne, Kopfstütze
- Überprüfung der Leistung von Kopfstützen und Sitzlehnen beim Heckaufprall
- Ermittlung tatsächlicher Kräfte, die von Airbags und Sicherheitsgurten auf den Fahrer ausgeübt werden

